Question		Answer	Marks	Guidance
1	(i)	A Normal test is not appropriate since the sample is small and ... the population variance is not known (it must be estimated from the data).	E1 E1 [2]	Allow use of " σ ", otherwise insist on "population".
1	(ii)	The sample is taken from a Normal population.	B1 [1]	
1	(iii)	$\begin{aligned} & \mathrm{H}_{0}: \mu=7.8 \\ & \mathrm{H}_{1}: \mu \neq 7.8 \end{aligned}$ where μ is the mean water pressure.	B1	Both hypotheses. Hypotheses in words only must include "population". Do NOT allow " $\bar{X}=\ldots$ " or similar unless \bar{X} is clearly and explicitly stated to be a population mean. For adequate verbal definition. Allow absence of "population" if correct notation μ is used.
		$\bar{x}=7.631 \quad s=0.1547$ Test statistic is $\frac{7.631-7.8}{\frac{0.1547}{\sqrt{9}}}$	B1 M1	$s_{\mathrm{n}}=0.1459$ but do $\underline{\text { NOT }}$ allow this here or in construction of test statistic, but ft from there. Allow c's \bar{X} and/or s_{n-1}. Allow alternative: $7.8+(c$'s -2.896$) \times 0.1547 / \sqrt{9}$ (= 7.65...) for subsequent comparison with \bar{x}. (Or $\bar{x}-(c$'s -2.896$) \times 0.1547 / \sqrt{9}(=7.78 \ldots)$ for comparison with 7.8.)
		$=-3.27(7)$	A1	c.a.o. but ft from here in any case if wrong. Use of $\mu-\bar{x}$ scores M1A0.
		Refer to t_{8}. Double-tailed 2\% point is ± 2.896.	M1 A1	No ft from here if wrong. Must compare test statistic with minus 2.896 unless absolute values are being compared. No ft from here if wrong. Allow $\mathrm{P}(t<-3.27(7)$ or $t>3.27(7))=0.0113$ for M1A1.
		Significant. Sufficient evidence to suggest that the mean water pressure has changed.	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	ft only c's test statistic if both M's scored. ft only c's test statistic if both M's scored. Conclusion in context to include "average" o.e.
			[9]	

Question		Answer	Marks	Guidance
1	(iv)	In repeated sampling, 95\% of all confidence intervals constructed in this way will contain the true mean.	E1 E1 [2]	
1	(v)	CI is given by $7.631 \pm$ $\begin{aligned} & 2 \cdot 306 \\ & \times \frac{0.1547}{\sqrt{9}} \\ &=7.631 \pm 0.118(9)=(7.512,7.750) \end{aligned}$	M1 B1 M1 A1 [4]	ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{8} is OK. Allow c's \bar{x}. 2.306 seen. Allow c's s_{n-1}. c.a.o. Must be expressed as an interval.
2	(i)		G1 G1 G1 [3]	Curve with positive gradient, through the origin and in the first quadrant only. Correct shape for an inverted parabola ending at maximum point. End point (2, 3/4) labelled.

Question		Answer	Marks	Guidance
2	(iv)	$\begin{aligned} \mathrm{P}(X & <1)=\frac{3}{16} \int_{0}^{1}\left(4 x-x^{2}\right) \mathrm{d} x \\ & =\frac{3}{16}\left[2 x^{2}-\frac{x^{3}}{3}\right]_{0}^{1} \\ & =\frac{3}{16}\left\{\left(2-\frac{1}{3}\right)-0\right\} \\ & =\frac{5}{16} \end{aligned}$	M1 A1 [2]	Correct integral for $\mathrm{P}(X<1)$ with limits (which may appear later). cao. Condone absence of " -0 " when limits applied.
2	(v)	Regard the reed beds as clusters. Select a few clusters (maybe only one) at random. Take a (simple random) sample of reeds (or maybe all of them) from the selected cluster(s).	E1 E1 E1 [3]	NB "Clusters of reeds" scores 0 unless clearly and correctly explained.
3		$\begin{aligned} P 1 & \sim \mathrm{~N}\left(2025,44.6^{2}\right) \\ P 2 & \sim \mathrm{~N}\left(1565,21.8^{2}\right) \\ I & \sim \mathrm{~N}\left(1410,33.8^{2}\right) \end{aligned}$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.
3	(i)	$\begin{aligned} & \mathrm{P}(P 1<2100)= \\ & \mathrm{P}\left(Z<\frac{2100-2025}{44.6}\right.=1.681(6)) \\ &=0.9536 / 7 \end{aligned}$	M1 A1 A1 [3]	For standardising. Award once, here or elsewhere. с.a.o.

Question		Answer	Marks	Guidance
3	(ii)	$\begin{aligned} & \text { Require } \mathrm{P}(P 1-P 2>400) \\ & P 1-P 2 \sim(2025-1565=460, \\ & \left.44.6^{2}+21.8^{2}=2464.4\right) \end{aligned} \quad \begin{aligned} & \mathrm{P}(\text { this }>400)= \\ & \mathrm{P}\left(Z>\frac{400-460}{\sqrt{2464.4}}=-1.208(6)\right)=0 \cdot 8864 / 5 \end{aligned}$	M1 B1 B1 A1 [4]	Mean. Variance. Accept sd (= 49.64). cao
3	(iii)	$\begin{aligned} & T=P 1+P 2+I \sim \mathrm{~N}(5000, \\ & \left.\quad \sigma^{2}=44.6^{2}+21.8^{2}+33.8^{2}=3606.84\right) \\ & \text { Require } b \text { s.t. } \mathrm{P}(T>b)=0.95 \\ & \therefore \frac{b-5000}{\sqrt{3606.84}}=-1.645 \\ & \therefore b=5000-1.645 \times \sqrt{3606.84}=4901.2 . \end{aligned}$	B1 B1 B1 A1 [4]	Mean. Variance. Accept sd (= 60.056...). -1.645 seen. c.a.o.
3	(iv)	$\begin{gathered} \text { Mean }=(1.2 \times 2025)+(1.3 \times 1565)+ \\ (0.8 \times 1410)=£ 5592.50 \\ \text { Var }=\left(1.2^{2} \times 44.6^{2}\right)+\left(1.3^{2} \times 21.8^{2}\right)+ \\ \left(0.8^{2} \times 33.8^{2}\right)=4398.7076 \approx £^{2} 4399 \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Condone absence of $£$. Use of at least one of $\left(1.2^{2} \times 44.6^{2}\right)$ etc... Condone absence of $£^{2}$.
3	(v)	$\begin{aligned} & \text { Mean }=(123.72+127.38) / 2=125.55 \\ & s=\frac{127.38-125.55}{2.576 / \sqrt{50}}=5.02(3) \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$	Cao Sight of 2.576 . Or equivalent. cao

